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The paper is the second in a series concerned with the development of the quasi-
mode concept in the context of boundary layers. The evolution of localized two-
dimensional perturbations in boundary layers without inflection points is considered
within the framework of linear inviscid theory. Making use of the results of Part 1
(Shrira & Sazonov 2001) for monochromatic perturbations it is shown that arbitrary
broadband initial perturbations tend to a universal asymptotic regime at large
times t . We refer to the phenomenon of the emergence of the asymptotic regime
as ‘adjustment’. The regime itself corresponds to a slow dynamics of long-wave
triple-deck-type perturbations and is described well as the evolution of a single quasi-
mode, which allows dramatic simplification of its description. At the asymptotic
stage the spatio-temporal structure of the perturbation is explicitly described in terms
of Fresnel’s functions with coefficients specified by certain integrals of the initial
distribution. Asymptotically the perturbation represents a sharply localized group
of decaying oscillations which propagate with celerity approaching the mean flow
velocity at the surface. For generic perturbations, the decay, in terms of streamwise
velocity, is t−1/2. The envelope of the group is formed by the Landau damping intrinsic
to the quasi-modes, and the length of the group and the number of oscillations in
the group grow with time as t2/3 and t1/6, respectively. The evolution of the non-
quasi-modal part is also investigated. The vorticity perturbation is found to form a
vortex patch shaped like a comet tail and advected by the mean flow. The picture of
evolution established for generic perturbations is found to hold for several classes of
non-generic but physically relevant initial distributions; the corresponding solutions
are presented and discussed. The analytical results have been confirmed by the direct
numerical simulation of the linearized primitive equations.

1. Introduction
During most of the 20th century theoretical studies of the evolution of perturbations

in boundary-layer-type flows were dominated by the normal-mode analysis and
the search for linearly unstable modes, the latter being viewed as the main and
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even the only route to laminar–turbulent transition (e.g. Lin 1955; Chandrasekhar
1981; Drazin & Reid 1981). The relatively recent evidence that the so-called bypass
scenarios of transition, where the linear modal instabilities are of little importance,
are quite common (Jacobs & Durbin 2001), supported an alternative line of thought
presented in clear and concise form in (e.g. Trefethen et al. 1993). Its essence lies
in the observation that for a wide class of basic flows there exist perturbations
of non-modal character which experience considerable transient growth within the
framework of linear theory. This growth is expected to result in the triggering of
nonlinear dynamics and secondary instabilities (Schmidt & Henningson 2001). We
pursue a ‘third way’, conceptually very different from those outlined above. It is
possible that in a flow without linear instabilities of significance or strong transient
growth there are motions which are weakly decaying but nevertheless eventually
become nonlinear and cause secondary instabilities, as will be shown in a later
paper. In view of such a possibility the natural question regarding what happens to
the arbitrary linearly stable perturbations in boundary layers, which seemed to be
considered unworthy of attention as long as the perturbations are decaying, acquires
a new importance.

The problem has been intensively studied in the context of the so-called spot
dynamics by means of analytical, numerical and experimental approaches (see e.g.
Smith, Dodia & Bowles 1994; Bowles & Smith 1995; Jacobs & Durbin 2001; and
references therein). However, as was noted by Bowles & Smith (1995) ‘there seem to be
few if any linear or nonlinear studies of initial-value problems which are not restricted
to narrow-band perturbations’. Bowles & Smith (1995) addressed the challenge by
considering a model problem where the boundary layer was approximated by a
piecewise linear flow with one velocity break. The present work partly fills this gap
by providing analytical treatment of the evolution of broadband perturbations for
arbitrary continuous boundary layers.

The present paper is the second in a series on the quasi-modes (QM) introduced in
the context of boundary layers in Shrira & Sazonov (2001) (hereinafter called Part 1).
It is based upon specific results regarding the evolution of spatially monochromatic
perturbations obtained in Part 1 and further develops the concept of quasi-modes.
A quasi-mode is an approximate solution of the linear boundary-value problem
composed of the Rayleigh equation and appropriate boundary conditions; the solution
is described by the residue in the pole of the Green’s function lying on a non-physical
sheet of the complex plane (Landau pole). From the spectral viewpoint the quasi-
mode represents a specific aggregate of normal modes of the continuous spectrum of
the boundary-value problem mentioned. For harmonic perturbations of wavelength
2π/k, long compared to the boundary layer thickness H , kH � 1, this aggregate,
to the leading order in kH , behaves as if it were a single decaying mode of a
discrete spectrum characterized by a specific dispersion relation. The quasi-modes are
regular at the leading order in kH , have asymptotically small decay and represent an
intermediate asymptotics over a large time interval O((kH )−3). This means that with a
good accuracy in this time interval the solution of the Cauchy problem for such long
monochromatic perturbations can be described as the evolution of the corresponding
quasi-mode, the discrepancy in terms of energy being O((kH )4) or smaller. In the
present work we study the evolution of arbitrary broadband linear perturbations.
While for each harmonic constituent of a perturbation the quasi-modes represent
at best (and only for the long-wave components) their intermediate asymptotics, we
show that large-time asymptotics of generic initial perturbations are described in
terms of quasi-modes. The larger the times the better are the quasi-mode asymptotics.
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There is a certain resemblance with the phenomenon known in geophysical fluid
dynamics as ‘geostrophic adjustment’: if an arbitrary initial perturbation is considered
within the framework of the full set of hydrodynamic equations then after a certain
time the total motion will split into fast and slowly evolving constituents (Rossby
1937, 1938). The fast ones travel far away and, remarkably, their effect upon the slowly
evolving constituents is negligible even with nonlinearity taken into account, while the
evolution of the slow ones is governed by a much simpler closed system of equations
(Reznik, Zeitlin & Ben Jelloul 2001). Thus, if we are concerned with the long-time
field evolution it is sufficient to study only the subset of slow motions, provided we
are able to find the long-time asymptotics of the transition problem, i.e. to project
given initial conditions into the subset of slow motions. In our case, we also begin
with arbitrary broadband initial conditions which after a certain transitional period
produce long-wave perturbations, while the shorter high-frequency field components
just die out. In the present paper we do not describe the entire transitional process; we
find the asymptotics, which might be viewed as the result of ‘adjustment’. Hereinafter
we will use this term in this sense. To continue exploitation of the same analogy
and to place it more clearly into the boundary layer context note that the so-called
triple-deck asymptotic regime in boundary-layer theory (e.g. Smith 1982; Schmidt &
Henningson 2001), being confined to long and slow motions, plays the role of the
slow geostrophic subset; correspondingly, the derived asymptotics allow us to relate
this regime to arbitrary broadband initial conditions.

The paper is organized as follows. In § 2 we begin with a standard mathematical
formulation for two-dimensional motions in ideal incompressible fluid and outline
the class of generic initial perturbations we consider. Following Part 1, in an arbitrary
perturbation all constituent Fourier harmonics can be divided into three groups:
the long-wave ones which obey the quasi-mode asymptotics from the start; those
of even larger scale which initially are at the stage of initial transition and turn
into quasi-modes at a certain later time; and shorter scales which never exhibit
quasi-mode asymptotics. First, in § 3 we obtain rough estimates of the energy in
each of these three constituent groups as a function of time. We show that for
generic localized initial perturbations the quasi-mode constituent inevitably becomes
dominant at large times. In the central § 4 the spatio-temporal structure of the
large-time asymptotics is investigated in detail and a non-trivial field structure is
revealed. The analytic results are verified by direct numerical simulation of the
Cauchy problem for a few typical initial distributions. The concluding § 5 provides
a brief discussion of some implications of the results. The present study is confined
to small-amplitude inviscid two-dimensional perturbations; nonlinear, viscous and
three-dimensional effects constitute the subject of the next parts of the series.

2. Initial-value problem for inviscid boundary-layer-type shear flows
2.1. Statement of the problem

We consider two-dimensional motions of ideal incompressible fluid of unit density.
From the start we explicitly separate the perturbations and the basic flow. The latter is
assumed to be steady and uniform with the velocity profile {Ū (z̄), 0, 0}, where x̄, ȳ, z̄

are the downstream, spanwise and vertical coordinates, respectively. Throughout the
paper to distinguish dimensional variables from their non-dimensional counterparts
we use an overbar for the dimensional ones. Although we will mostly use non-
dimensional variables, some key results are presented in the dimensional form as well.
We choose the Cartesian reference frame moving with the basic flow at infinity as
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Figure 1. Sketch of geometry and notation showing initial perturbation ω0 in a
boundary-layer-type flow U (z).

shown in figure 1, i.e. Ū → 0 as z̄ → ∞ and Ū = Ū s > 0 at the surface z̄ = 0. The
frame convention we choose is typical of free-surface boundary layers; we use a model
of wind-induced laminar boundary layer in water as the main example throughout
the paper. Since the present study is confined to consideration of two-dimensional
motions (∂y ≡ 0), it is convenient to introduce the perturbation stream function ψ̄

ū = −ψ̄ z̄, w̄ = ψ̄ x̄ (let ψ̄(z̄ = 0) = 0), (2.1)

where ū and w̄ are horizontal and vertical velocity perturbations. By taking the
divergence of the Euler equations and making use of the continuity equation we
reduce the governing equations to the form

(∂t̄ + Ū∂x̄) ∇2ψ̄ − Ū ′′∂x̄ψ̄ = J {ψ̄, ∇2ψ̄}. (2.2)

Here ∇2 ≡ ∂2
x̄ + ∂2

z̄ , a prime means differentiation with respect to z̄, although the
subscripts x̄ and z̄ are also used below to denote the correspondent derivatives; J is
the Jacobian of two functions. Introducing the vorticity of the perturbations ω̄ as

ω̄ = w̄x̄ − ūz̄ =
(
∂2

x̄ + ∂2
z̄

)
ψ̄, (2.3)

we note that

J {ψ̄, ∇2ψ̄} = J {ψ̄, ω̄} = ψ̄ z̄ω̄x̄ − ψ̄ x̄ ω̄z̄ ≡ −(ūω̄x̄ + w̄ω̄z̄). (2.4)

We confine our present study to linear perturbations and thus neglect the Jacobian.
The boundary conditions are standard for this type of problem. We assume the

‘no-flux’ condition at the surface

w̄ ≡ ψ̄ x̄ = 0 as z̄ = 0. (2.5)

The perturbations are also required to decay far from the surface:

ψ̄, ω̄, ū, w̄ → 0 as z̄ → ∞. (2.6)

At the initial moment the velocity field satisfying (2.5)–(2.6) is assumed to be given:

ψ̄(x̄, z̄, t̄ = 0) = ψ̄0(x̄, z̄) (2.7)

By virtue of the chosen condition (ψ̄(z̄ = 0) = 0) it is sufficient, and often more
convenient, to present the above initial conditions in terms of the initial vorticity
distribution

ω̄0(x̄, z̄) ≡
(
∂2

x̄ + ∂2
z̄

)
ψ̄0. (2.8)

The set of equations (2.2)–(2.8) prescribes the initial-value problem which is the
subject of our study.
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2.2. Assumptions regarding the basic flow and initial disturbances

We focus our attention on generic boundary-layer-type flows and generic pertur-
bations. Below we formulate the assumptions ensuring that both the basic flow and
initial perturbation do not contain pronounced small lengthscales in z̄.

We introduce a characteristic flow thickness H̄ as

H̄ =
Ū s∣∣Ū ′

s

∣∣ , (2.9)

where Ū ′
s ≡ ∂z̄Ū (z̄ = 0) is the gradient of the mean flow at the surface. Assume that

the flow profile is smooth enough and does not contain characteristic scales smaller
than H̄ , i.e. ∣∣Ū (n)(z)

∣∣ �
Ū s

H̄ n
, n = 1, 2, . . . . (2.10)

Assume the initial vorticity ω0 to be localized in the layer z̄ � H and decaying as z̄

increases faster than Ū ′:
ω̄0

Ū ′ → 0 as z̄ → ∞. (2.11)

It is also assumed that the vertical scale of the initial distribution is of the same order
as that of the basic flow and does not contain characteristic scales smaller than H̄ ,
i.e. ∣∣∂n

z̄ ω̄0

∣∣ �
|ω̄0|
H̄ n

. (2.12)

The initial perturbation is also expected to have a smooth spatial spectrum with
respect to horizontal wavenumber without multiple peaks. We emphasize that we
impose no restrictions on the dominant scale of the perturbations.

2.3. Non-dimensional variables

Finally, to conclude the mathematical formulation of the problem, we introduce non-
dimensional variables using the scales H̄ , |Ū ′

s |−1, Ū s specified by the basic flow as
follows:

x =
x̄

H̄
, z =

z̄

H̄
, t = t̄ |Ū ′

s |, U =
Ū

Ū s

, u =
ū

Ū s

, . . . . (2.13)

The use of these variables is equivalent to re-scaling the measured units in such a
way that

Us = 1, U ′
s = −1, H = 1.

Equations (2.2)–(2.8) preserve their form in terms of these non-dimensional variables,
i.e. remain the same with bars omitted.

3. Rough estimates
Having linearized the governing equation (2.2) we work within the framework of

(∂t + U∂x)
(
∂2

x + ∂2
z

)
ψ − U ′′∂xψ = 0. (3.1)

Applying the spatial Fourier transform

ψ̂(t, k, z) =

∫ +∞

−∞
ψ(t, x, z)e−ikxdx, ψ(t, x, z) =

1

2π

∫ +∞

−∞
ψ̂(t, k, z)eikxdk, (3.2)
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we find that every spectral component ψ̂(t, k, z) satisfies the equation

(∂t + ikU )
(
∂2

z − k2
)
ψ̂ − ikU ′′ψ̂ = 0, (3.3)

where k = k̄H̄ is a non-dimensional wavenumber. The properies of (3.3) are well-
studied; in particular, the evolution of spatially harmonic components within its
framework has been investigated thoroughly in Part 1. A summary of the relevant
results is given below in § 3.1. The evolution of non-monochromatic perturbations
proves to be qualitatively different. This section contains a preliminary analysis aimed
at capturing its essential features.

3.1. Spatially harmonic field: results

The key point established in Part 1 is that the solution describing the evolution of
each spatially harmonic component can be represented as a sum of two parts: a
mode-like part ψ̂QM, and a non-modal part decaying as t−2 when t → ∞; the latter

we call ‘tail’ and denote as ψ̂Tail:

ψ̂ = ψ̂QM + ψ̂Tail, (3.4a)

ψ̂QM(x, z, t) = ψ̂QM(z) exp[ik(x − cpt)], (3.4b)

ψ̂Tail(x, z, t) ∝ t−2, t 	 max
z

{U ′′/(U ′)2}|k|−1. (3.4c)

Here cp is an eigenvalue of the boundary value problem for ψ(z; c):

ψ ′′ − k2ψ − U ′′

U − c
ψ = 0, (3.5a)

ψ = 0 as z = 0, (3.5b)

ψ ′ + |k|ψ → 0 as z → ∞. (3.5c)

If Im cp > 0 solution of this problem gives a growing normal mode. If Im cp < 0, i.e.
in the case we are primarily interested in, the problem (3.5a–c) must be solved on a
complex z-plane on a contour passing around the point zc = U−1(c) in accordance
with Lin’s rule (Lin 1955). Then the solution of this boundary-value problem gives
the so-called quasi-mode (QM) (Briggs, Daugherty & Levy 1970; Part 1) which has
a discontinuity in the critical layer. In the solution of the Cauchy problem this
discontinuity is exactly compensated by the discontinuity in the non-modal part ψTail

having the opposite sign.
As was shown in Part 1, in the long-wave limit |k| ≡ |k̄H̄ | � 1 the eigenvalue cp

can be approximated by:†
Re cp = 1 − |k| + O(k2 log k), (3.6a)

Im cp =

{
�k2sgn k + O(k3 log k), U ′′

s 
= 0

�k3sgn k + O(k4 log k), U ′′
s = 0.

(3.6b)

where � is a constant specified by the basic flow at the surface:

� =

{
πU ′′

s = πŪ ′′
s Ūs |Ū ′

s |−2, U ′′
s 
= 0

πU ′′′
s = πŪ ′′′

s Ū 2
s |Ū ′

s |−3, U ′′
s = 0.

(3.7)

† In Part 1 all formulae are given for positive k. Here they are generalized to be valid for negative
k as well, which is essential for our further consideration.
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In this paper we are primarily concerned with non-degenerate basic flows for which
U ′′

s 
= 0, although the case U ′′
s 
= 0 is not uncommon. The Blasius boundary layer is

even more degenerate: U ′′
s = 0 and U ′′′

s = 0. It can be treated similarly.
For convenience, it is also worthwhile to present the formulae for the leading terms

of real and imaginary parts of the eigenvalue cp in dimensional form:

Re c̄p � Ū s +
Ū 2

s

Ū ′
s

|k̄|, Im c̄p �


π

Ū ′′
s Ū

4
s

Ū ′4
s

k̄2sgn k̄, Ū ′′
s 
= 0

π
Ū ′′′

s Ū 6
s

Ū ′6
s

k̄3sgn k̄, Ū ′′
s = 0.

For large and intermediate |k| the dependence cp(k) can be found numerically
(see Part 1); cp(k) has finite negative imaginary part for all examples of particular
boundary-layer-type flows studied in Part 1, and this will be assumed to be the case
here too.

For the long-wave perturbations (where ci ≡ Im cp is small) the quasi-mode domin-
ates over a wide time interval t1 < t < t2 where

t1 ∼ |k|−1
, t2 ∼

{
|k|−3

log(1/ |k|), U ′′
s 
= 0

|k|−4
log(1/ |k|), U ′′

s = 0.
(3.8)

Here the interval of dominance was defined using the energy criterion. If the criterion
were based upon dominance in terms of different field components, we would arrive
at the same estimate for t2 if we choose ψ or w. If we choose a criterion based upon
horizontal velocity u, then t2 would be 1/ |k| times smaller. See Part 1 for details.

At small times, t � t1, an initial transition takes place: initial perturbations might
grow or decay, but essentially the mode-like and non-modal parts remain of the same
order as the initial perturbation.

For large times, t � t2, the non-modal part inevitably dominates and the total
disturbance decays as t−2.

For the intermediate and short waves (|k| � 1) the perturbation field does not
exhibit any intermediate QM-type asymptotics; in this case the initial transition
(t � |k|−1

) is directly followed by the t−2 decay (t 	 |k|−1
) although some traces of

QM asymptotics can be found for |k| up to unity (see Part 1).
It is worth noting that, although the numerics of Part 1 show that ci ≡ Im cp tends

to zero when |k| → ∞, nevertheless the quasi-mode can be disregarded for sufficiently
large |k|. In this case the quasi-mode does not contribute to the solution of the
initial value problem since the pole associated with the quasi-mode passes beneath
the vertical cut drawn from the branch point c̄ = Ū s (see figure 6 in Part 1 for details).

3.2. Generic non-monochromatic perturbations: QM domination

Based on the acquired understanding of spatially monochromatic perturbations sum-
marized above, now we are in position to consider, at first qualitatively, the evolution
of an arbitrary broadband perturbation at comparatively large times t 	 1. By that
time all short (|k| 	 1) and intermediate (|k| ∼ 1) harmonic components are at the
stage of the t−2 decay. The long-wave components (|k| � 1) can be split into two
groups:

(i) For all times t there always exist the longest wave components which still are
at the stage of initial transition ψIni. We estimate the upper boundary for those
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components from (3.8):

|k| < k1(t) ∼ t−1. (3.9)

(ii) When |k| > k1 we represent the perturbation as a sum of the modal (3.4b) part
and the tail (3.4c). The tail dominates if (see (3.8))

|k| > k2(t) ∼ t−1/3 	 k1(t) (3.10)

(k2 ∼ t−1/4 if U ′′
s = 0, but U ′′′

s 
= 0). The QM asymptotics dominates when k ∈ [k1, k2].
Thus we can represent the total solution as a sum of these parts:

ψ � ψIni + (ψQM + ψTail), (3.11a)

ψIni � 1

2π

∫ k1

−k1

ψ̂(k, z, t)eikx dk, (3.11b)

ψQM � 1

2π

{∫ −k1

−∞
+

∫ ∞

k1

}
ψ̂QM(z, k)eikx−ikcpt dk, (3.11c)

ψTail � 1

2π

{∫ −k1

−∞
+

∫ ∞

k1

}
ψ̂Tail(z, k, t)eikx dk. (3.11d)

3.2.1. Preliminary definitions

The total energy of a perturbation E(t) can be represented in two forms:∫ +∞

−∞
dx

∫ ∞

0

dz
u2 + w2

2
= E(t) =

1

2π

∫ +∞

−∞
dk

∫ ∞

0

dz
|û|2 + |ŵ|2

2
. (3.12)

This follows from the fact that for every z by virtue of the Parseval’s identity∫ +∞

−∞
dx

u2 + w2

2
=

1

2π

∫ +∞

−∞
dk

|û|2 + |ŵ|2

2
,

and after integration with respect to z and change of the order of integration we
obtain (3.12).

We introduce spatial and spectral energy densities:

ρ(x, t) =

∫ ∞

0

dz
u2 + w2

2
, ρ̂(k, t) =

1

2π

∫ ∞

0

dz
|û|2 + |ŵ|2

2
.

Then

E(t) =

∫ +∞

−∞
dx ρ(x, t) =

∫ +∞

−∞
dk ρ̂(k, t), (3.13)

i.e. the instantaneous energy of the perturbation E(t) can be represented as a sum of
energies of the all wave components. Since ρ̂(k, t) is an even function with respect
to k,

E(t) = 2

∫ +∞

0

ρ̂(k, t) dk.

The evolution of ρ̂(k, t) has been studied in Part 1, where it is denoted as E(t), which
is 2πρ̂(k, t) in the present notation.

3.2.2. Estimations of the constituents

We split integral (3.13) into three parts in the same manner as in (3.11):

E(t) = EIni + (EQM + ETail) � 2

∫ k1

0

ρ̂Ini dk +

(
2

∫ ∞

k1

ρ̂QM dk + 2

∫ ∞

k1

ρ̂Tail dk

)
. (3.14)
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Part Decay of ρ̂(k, t) with respect to t

ρ̂Ini(|k| < k1) Remains of order of ρ̂00

ρ̂QM(k1 < |k| < k2) exp (2ci t) ∼ exp (−2�k3t)(∼exp (−2�k4t), the Blasius flow)
ρ̂Tail(|k| > k1) (kt)−2

Table 1. Decay law for each constituent of ρ̂(k, t) based on results in Part 1.

Note that we can split the energy densities for the tail and modal-part:

EQM + ETail =

∫ ∞

k1

dz
|ûQM + ûTail|2 + |ŵQM + ŵTail|2

2

=

∫ ∞

k1

dz
|ûQM|2 + |ŵQM|2

2
+

∫ ∞

k1

dz
|ûTail|2 + |ŵTail|2

2

+

∫ ∞

k1

dz (|ûQMûTail| + |ŵŵTail|)

The last integral is much smaller than either of the first two. This is due to the
oscillatory behaviour in z of the tail: ûTail, ŵTail ∝ e−ikU (z)t , whereas ûQM and ŵQM

have a characteristic lengthscale of the order H̄ (see Part 1 for details). Thus,

EQM + ETail � 2

∫ ∞

k1

ρ̂QM dk + 2

∫ ∞

k1

ρ̂Tail dk. (3.15)

Now we estimate the contribution of each part in (3.14). We consider the initial
perturbations whose spectrum ρ̂(k, 0) is a smooth function without multiple peaks.
First we consider the generic situation when the spectrum tends to a non-zero constant
ρ̂(k, 0) → ρ̂00 > 0 as k → 0. Then the spectrum corresponds to a single monopole
vortex near the surface. The evolution of more general classes of perturbations will
be dealt with below.

At this stage within the framework of linear analysis we are free to choose the
normalization of the perturbation amplitude, and to simplify the formulae we assume
for the time being that the constant ρ̂00 is of order of unity.

Short-wave components decay faster than long-wave ones; therefore for sufficiently
large time t the perturbation energy is determined by the long-wave components such
that ρ̂(k, 0) ∼ ρ̂00 ∼ 1.

The decay laws for every constituent based on the results of Part 1 are summarized
in table 1.

(i) EIni: We begin with the longest, k < k1, components which are still in the stage
of the initial transition. Taking into account (3.9) it is easy to find

EIni(t) ≈ 2

∫ k1

0

ρ̂(k, t) dk ∼ 2ρ̂00

∫ t−1

0

dk ∼ t−1. (3.16)

(ii) EQM: The contribution of the QM-part is estimated as follows:

EQM(t) ≈ 2

∫ k2

k1

ρ̂QM(k, 0) exp(2ci(k)t) dk ∼ 2

∫ t−1/3

t−1

exp(−2�k3t) dk

∼
∫ ∞

t−1

exp(−2�k3t) dk.
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Substitution s = 2�k3t yields

EQM(t) ∼ 1(
2�t1/3

) ∫ ∞

2�t−2

e−s

s2/3
ds ∼ 1

(2�t)1/3

[ ∫ ∞

0

e−s

s2/3
ds + O

(
t−2/3

)]
∼ t−1/3 (3.17)

as
∫ ∞

0
s−2/3e−s ds = �(1/3) ≈ 2.68 ∼ 1 (For the U ′′

s = 0 and U ′′′
s 
= 0 case we would

have EQM(t) ∼ t−1/4).
(iii) ETail: The contribution of the tail is

ETail(t) ≈
∫ ∞

k1

ρ̂Tail(k, t) dk ∼ ρ̂00

∫ ∞

t−1

k−2t−2 dk ∼ t−1. (3.18)

Note that all contributions to ETail and EQM are taken into account, including
the spectral intervals where the corresponding perturbation constituents are not
dominating.

3.2.3. Discussion

The principal conclusion of profound importance which immediately follows from
the estimations above is that for sufficiently large times the QM contribution
necessarily dominates. Although for every harmonic component the mode-like part
represents intermediate asymptotics only, nevertheless it is the true asymptotics for
a generic initial perturbation with broadband initial spatial spectrum. At first sight
the components which are in the stage of initial transition should dominate, as they
do not decay. However, their contribution rapidly diminishes since the corresponding
spectral interval narrows as t−1. Thus for sufficiently large time we obtain

EQM

Enon-modal

=
EQE

E − EQE

∼ t2/3, t → ∞ (3.19)

(∼t3/4 for the case U ′′
s = 0, U ′′′

s 
=0).
This fundamental assertion, formulated in terms of energy, also remains valid if

we are primarily interested in w or ψ components of the perturbation. Qualitatively
similar behaviour can be obtained in terms of the horizontal velocity u as well (see
below).

3.3. Behaviour of non-generic perturbations

Apart from the generic initial perturbations studied above, there are also situations of
interest where an initial perturbation has a smooth initial spectrum of ψ decaying as
kn as k → 0. Then the spectral energy density behaves as k2n near zero. For natural n

this spectrum corresponds to a vortex multipole of order n. If the initial perturbation
is not localized but is a noise-like signal, its spectrum can have fractional n. As our
speculations in this Section hold for such perturbations, we incorporate them in our
analysis as well.

For such perturbations, proceeding similarly we find the following estimates:

EIni(t) ∼ t−(2n+1), (3.20a)

EQM(t) ∼ t−(2n+1)/3, (3.20b)

ETail(t) ∼
{

t−(2n+1), n < 1/2

t−2, n � 1/2.
(3.20c)

The evaluation of ETail needs some explanation. If n < 1/2 the integral
∫ ∞

k1
k2n−2 dk

converges and the main contribution to ETail is due to the vicinity of k1. If n > 1/2 the
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integral
∫ ∞

k1
k−2+n dk diverges at infinity whereas the integral

∫ ∞
k1

ρ̂(k, t)k−2 dk converges

(as
∫ ∞

k1
ρ̂(k, t) dk converges). This means that the short-wave components should be

taken into account, for which the spectrum ceases to be k2n. We can put

ETail = t−2

∫ ∞

k1

ρ̂(k, 0)k−2 dk = t−2

∫ k∗

k1

ρ̂(k, 0)k−2 dk + t−2

∫ ∞

k∗

ρ̂(k, 0)k−2 dk,

where k∗ � 1 and does not depend on t; then ρ̂(k∗, 0) ≈ kn
∗ . Thus

ETail = t−2

∫ k∗

k1

k2n−2 dk + t−2A,

where A =
∫ ∞

k∗
ρ̂(k, 0)k−2 dk does not depend on t . The first integral can be estimated

roughly as

t−2

∫ k∗

k1

k2n−2 dk ∼
{

t−2n−1, n < 1/2

t−2kn−1
∗ , n > 1/2.

The proportion of the modal part obeys the relation

EQM

Enon-modal

∼ t ν, ν =

{ 2
3

+ 4
3
n, n < 1/2

5
3

− 2
3
n, n > 1/2,

(3.21)

which gives the following values of the time exponent ν for different values of n:

The spectrum exponent, n 0 1/2 1 3/2 2 5/2 3

The time exponent, ν 2/3 4/3 1 2/3 1/3 0 −1/3

It is worth mentioning that at first sight it seems easier to split interval [k1, ∞) into
two: [k1, k2] and [k2, ∞) where the QM part and the tail dominate, respectively, and
after integration over these intervals we obtain estimations for the QM part and the
tail. In fact, if we integrate the QM part within the limits [k1, k2] we arrive at the
same estimate. As for the tail, we have to include the components from the interval
[k1, k2] despite the fact that they are much smaller there compared to the QM part.
Nevertheless, they are much greater than the shorter-wave components, and if we
exclude the interval [k1, k2] in the integration we noticeably underestimate energy of
the tail for n < 1/2.

3.4. The rough estimates: conclusion and discussion

The conclusion from the above rough estimates is that the QM part dominates (in
terms of energy) if n < 5/2: that is for the most common vortex monopoles (n = 0),
as well as for vortex dipoles (n = 1) and quadrupoles (n = 2) the quasi-mode is the
true asymptotics.

For higher-order vortex multipoles the formulae suggest otherwise. The answer,
however, is not obvious, and a more elaborate analysis is needed. We stress that
we estimated global energy in the whole flow domain. As we see below, for the
initially localized perturbation, different parts of the evolving perturbation dominate
in different regions of the flow. Say, the tail component is advected by Ū (z̄) and,
therefore, is expected to be concentrated along the line x̄ = Ū (z̄) t̄; we would expect
the ‘initial transition’ part of the field to be roughly uniformly distributed in z and x
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in all the domain occupied by perturbation, while the QM component is concentrated
in the vicinity of the front x̄ = Ū s t̄ . Hence we can expect the dominance of the QM
part to be even more pronounced and to hold for a wider range situations if we
consider its energy (or other field components) locally. The time–space evolution of
the local structure of the field is the subject of the next section.

4. Large-time asymptotics
Having established that within the framework of linear theory the QM part

dominates the perturbation field at large times in most conceivable cases of interest,
now consider the evolution of an arbitrary broadband perturbation in more detail.
We focus on evaluation of the QM component starting with integral presentation
(3.11). For the sake of brevity we confine our attention to the generic flows with
U ′′

s 
= 0. The case U ′′ = 0 can be considered in a similar way.

For any kth wave component we can represent ψ̂QM as a product of an eigenfunction
ψ̃QM(z; k) describing the vertical structure of the quasi-mode, and its initial complex
amplitude â(k). Then we can re-write (3.11) as

ψQM(x, z, t) =
1

2π

∫ +∞

−∞
ψ̃QM(z; k) â(k) eik(x−cpt) dk. (4.1)

Notice that we include the longest wave interval [−k1, k1] in the integral (4.1)
to simplify the formulae and to avoid artifacts caused by an abrupt cutoff of the
spectrum. As we showed in § 3 the long-wave contribution due to this expansion of
the integration domain is negligibly small in the region of interest.

The following observation enables us to simplify dramatically consideration of
the basic integral (4.1). Since the quasi-mode phase velocity cp(k) has finite negative
imaginary part for all but the longest k: ci(k) → 0 as k → 0, only long-wave
components ‘survive’ and contribute to the large-time asymptotics. Therefore, if
we take whichever formula for ci(k) that provides a sufficient damping for large
and intermediate k and has correct asymptotic behaviour for small k, we obtain the
asymptotically correct result (i.e. when t → ∞). Similarly we can take any convenient
formulae for ψ̃QM(z; k), â(k), cr (k) if they have the right long-wave asymptotics and
do not have singularities at other wavelengths. These rather intuitive speculations will
be supported by the rigorous results below. Now we can formulate the strategy we
adopt in this section.

First, in § 4.1 we present the main terms in the long-wave expansion for the phase
velocity and the mode structure which will be used throughout the section. Being
interested in the asymptotic behaviour of the localized perturbations characterized
by initial horizontal scale L̄, we distinguish two qualitatively different cases. We
begin with the more general case: the initial disturbance is broadband, i.e. is not
initially a long-wave one, which implies L̄ � O(H̄ ). In the course of its evolution
such a perturbation inevitably turns into a long-wave one. Analysis of its large-time
asymptotics is the subject of § 4.2. The important particular case of the initially long-
wave perturbations (L̄ 	 H̄ ) is considered in § 4.3. The evolution of the vorticity field
is qualitatively different from that of the velocity components and therefore requires a
special consideration. The issue is dealt with in § 4.4. The range of situations where the
QM asymptotics works, found in § 3 on the basis of rough estimates, is refined in § 4.5.
A comparison of the derived analytic formulae with a direct numerical simulation is
carried out in § 4.6.



Quasi-modes in boundary-layer-type flows. Part 2 257

4.1. Long-wave approximation for the quasi-mode

First we employ the main-terms expansion in k for the phase velocity derived in
Part 1:

cp � 1 − |k| − i�k|k|. (4.2)

Although this formula somewhat overestimates the damping for intermediate k (see
Part 1, § 5.1), by virtue of the observation made above this does not affect the large-
time asymptotics of integral (4.1).

The simplified formulae of the long-wave expansion for the vertical structure of the
quasi-mode yield the main term of the expansions for different field components (see
Part 1 and also Shrira 1989):

ψ̃QM = U − 1, ũQM = −U ′, w̃QM = ik (U − 1), ω̃QM = U ′′. (4.3)

Note that since these eigenfunctions are normalized to keep ũQM(z = 0) = 1, then
in the long-wave approximation the amplitude â(k) is simply equal to kth wave
component of the horizontal velocity of the initial perturbation at the surface
û0(k, z = 0). Thus

a(k) ∼= û0(k, 0) [1 + O(k)] . (4.4)

Substituting (4.3) and (4.4) into (4.1) we obtain

ψ̂QM � (U − 1)
1

2π

∫ +∞

−∞
û0(k, 0) eik(x−cpt) [1 + O(k)] dk, (4.5)

where cp is given by long-wave approximation (4.2). The description of the evolution
is thus reduced to an analysis of (4.5), which is studied below in detail for different
cases.

4.2. Broadband perturbations

Consider the asymptotic behaviour of initially localized broadband perturbations of
initial horizontal scale L̄ � H̄ . Its initial spacial spectrum is assumed to be smooth
to allow Taylor’s expansion in k to any order.

4.2.1. Integrals In

Expand the initial spectrum û0(k, 0) in (4.5) into the Taylor’s series

û0(k, 0) =

∞∑
n=0

αn(ik)n, αn =
1

n!

∂n

∂(ik)n
û0(k, 0)

∣∣∣∣
k=0

. (4.6)

Since

∂n

∂(ik)n
eikx

∣∣∣∣
k=0

= xn, αn =
1

n!

∫ +∞

−∞
xnu0(x, 0) dx,

we can express ψQM in terms of integrals In(x, t) as follows:

ψQM(x, z, t) � [U (z) − 1]

∞∑
n=0

αnIn(x, t), (4.7a)

In(x, t) =
1

2π

∫ +∞

−∞
(ik)neik(x−cpt) dk. (4.7b)
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Similar formulae can be also obtained for the velocity and vorticity components:

uQM � −U ′
∞∑

n=0

αnIn, wQM � (U − 1)

∞∑
n=0

αnIn+1, ωQM � U ′′
∞∑

n=0

αnIn. (4.8)

Thus, the problem of the evolution, already reduced to the analysis of integral (4.5)
specific for each initial perturbation, has been further reduced to study of integrals In

which do not depend on the initial perturbation. Moreover, for integer n, it is sufficient
to consider just I0 as all other integrals can be obtained by simple differentiation with
respect to x:

In = ∂n
x I0. (4.9)

From the asymptotic estimate

In ∼ In−1

t1/2
(4.10)

which we show below it follows that in the large-time asymptotics the term with
the lowest n with non-zero αn prevails, which further dramatically simplifies the
description of the perturbation evolution. We denote as nmin the minimal n for which
αn 
= 0.

The specificity of the initial distribution manifests itself primarily in the value of
nmin for a given perturbation. For example, to describe the large-time evolution to the
leading order, we need, in the case of a monopole, just I0 for ψ and u and I1 for w;
to describe a dipole I1 and I2 are needed, respectively.

4.2.2. Preliminary analysis of I0 based on a dispersion relation

A rough picture of the behaviour of I0 can be reconstructed by means of a simple
analysis based on the explicit quasi-mode dispersion relation (4.2). From (4.2) it is
easy to find the quasi-mode group velocity Cg( we give its dimensional form C̄g as
well):

Cg =
d

dk
kRecp = 1 − 2|k|, C̄g = Ū s − 2

Ū 2
s

|Ū ′
s |

|k̄|.

Since the maximum of the group velocity Ū s is attained at k = 0, we should expect
the perturbation front to be at x̄ = Ū s t̄ (x = t). The greater the wavenumber of a
harmonic constituent of the perturbation is, the lower is its celerity determined by the
real part of the phase velocity and the greater is its damping, which is determined by
its imaginary part. For large times the perturbation in the vicinity of a point moving
with a velocity v = x/t < 1 (and 1 − v � 1) is constituted by the components with
the wavenumbers

|k(v)| ∼=
�v

2
,

where �v = 1 − v (�v̄ = Ū s − x̄/t̄) is velocity relative to the front in the opposite
direction to the flow.

Without the Landau damping the dispersion would be the same as in the linearized
Benjamin–Ono equation, while the local amplitude would decay uniformly for all k.
The Landau damping described by the factor

exp(−� |k|3 t) = exp

(
−�

(�v)3

8
t

)
(4.11)

causes faster decay of higher-wavenumber harmonics. Due to the cube in the exponent,
the decay becomes very abrupt when �v exceeds an O(t−1/3) value whereas harmonics
with k(v) such that �v < O(t−1/3) remain almost unaffected.
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Thus, we can expect only a long-wave oscillating perturbation to survive and to be
confined to an expanding zone (the QM-zone) specified by the inequalities

0 < �v < O
(
t−1/3

)
⇔ t − O

(
t2/3
)

< x < t.

The study of this asymptotic regime is carried out below.

4.2.3. Analytical study of I0 for large t

Now we elaborate the above conclusion based on a semi-qualitative consideration
by direct asymptotic analysis of integral (4.7). Substituting (4.2) into (4.7) and setting
n = 0 we arrive at the integral

I0 =
1

2π

∫ +∞

−∞
exp{ik(x − t) + ik |k| t − �k2 |k| t} dk. (4.12)

Splitting the integral into two: for positive and negative k, and then changing k → −k

in the integral for negative k we obtain a more convenient integral:

I0 =
1

2π

∫ +∞

0

exp{ik(x − t) + ik2t − �k3t} dk + c.c. (4.13)

For our asymptotic study it is convenient to introduce a stretched coordinate X with
the origin at the front x = t and a correspondingly scaled wavenumber K as follows:

X =
x − t

t1/2
= −�v t1/2, K = kt1/2. (4.14)

Then we re-write integral I0 in the form

I0 =
1

2πt1/2

∫ +∞

0

exp
{
iKX + iK2 − �K3t−1/2

}
dK + c.c. (4.15)

Notice that if we neglect the Landau damping, assuming � = 0 (recall that � is
proportional to U ′′), then integral (4.15) can be taken explicitly, (we present the
formula for its first derivative I �=0

1 as well):

I �=0
0 =

1√
2πt

g

(
X√
2π

)
, I �=0

1 = ∂xI
�=0
0 =

1

2πt

(√
π

2
X f

(
X√
2π

)
− 1

)
,

where g(Z) and f (Z) are the auxiliary Fresnel’s functions (see Abramowitz & Stegun
1965, 7.3.5, 7.3.6):

g(Z) =
[

1
2

− C(Z)
]
cos

πZ2

2
+
[

1
2

− S(z)
]
sin

πZ2

2
,

f (Z) =
[

1
2

− S(Z)
]
cos

πZ2

2
−
[

1
2

− C(z)
]
sin

πZ2

2
,

C(Z) =

∫ Z

0

cos
πz2

2
dz, S(Z) =

∫ Z

0

sin
πz2

2
dz.

Functions I �=0
0 and I �=0

1 are plotted in figure 2. Their main features worth noting
are that the period of oscillations increases as (−X) grows, the maxima are of the
same height for I0 and grow with (−X) for I1. Note that the scaled coordinate X is
a self-similar one for I �=0

n . Function I �=0
0 has a transparent interpretation: it is the

Green’s function for the linearized Benjamin–Ono equation.
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Figure 2. (πt)1/2I �=0
0 (solid) and (πt)I �=0

1 (dotted) versus self-similar variable X.
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Figure 3. (πt)1/2I0 versus self-similar variable X for different times t (indicated in the figure).
(πt)1/2I �=0

0 (X) is plotted as a dotted line as a reference curve.

For � 
= 0, to study large-t asymptotics of I0 we apply the saddle point method.
This is carried out in the Appendix; here we briefly discuss the results.

With a good accuracy I0 can be presented as a product of the already studied I �=0
0

and the damping factor (4.11), i.e.

I0 =
1√
2πt

g

(
X√
2π

)
exp

(
�X3

8t1/2
θ(−X)

)
, (4.16)

where θ(x) is the unit-step Heaviside function. Plots of normalized I0(X) for different
times are shown in figure 3.

Having found I0 we can easily evaluate all the family of integrals In from (4.16)
and (4.9):

In
∼=

1

(2πt)1/2+n/2

[
g(n)

(
X√
2π

)
exp

(
�

8

X3

t1/2
θ(−X)

)
+ O

(
1

t1/2

)]
, (4.17)
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where g(n)(Z) = ∂n
Zg(Z). Thus, we have found all the formulae needed to describe

the evolution of an arbitrary broadband perturbation. Below we investigate the main
features of the evolution in detail.

4.2.4. Extrema of the velocity field

Of particular interest is behaviour of extrema of the velocity field described by I0.
Simplifying (4.16) for large negative X we obtain

I0 ≈ 1√
πt

sin

{
X2

4
+

π

4

}
exp

{
−� |X|3

8t1/2

}
.

Maxima and minima are primarily determined by the trigonometric functions.
Therefore it is easy to find approximately the location Xext

0,j of the j th local extremum

and the corresponding value of I0, which we denote as I ext
0,j :

Xext
0,j ≈ −

√
π(4j + 1), I ext

0,j ≈ (−1)j√
πt

exp

{
−

�
∣∣Xext

0,j

∣∣3
8t1/2

}
. (4.18)

We number the extrema starting with j = 0 for the front one. The main (j = 0)
maximum of I �=0

0 (X) is at X�=0,ext
0,0 � −1.847 with I �=0,ext

0,0 � 0.521. Although (4.18)
are supposed to be valid for j not too small, the formulae provide a reasonably good
description for all j � 1.

For finite � every j th extremum (j > 0) grows until a time t ext
0,j

t ext
0,j =

�2
(
Xext

0,j

)2
64

=
�2π(4j + 1)

64
≈ �2π

16
j,

where it attains its maximum value

max
t

∣∣I ext
0,j

∣∣ = 1

exp
(√

π
(
t ext
0,j

)3/2
) ∼ 64

exp
(
π2�3j 3/2

)
and then decays proportionally to t−1/2: I ext

0,j ≈ (−1)j /
√

πt as t → ∞.
Note that for large t the impact of damping exponential factors in (4.16) on the first

few extrema becomes negligibly small (see also figure 3 showing how the shape of the
first maximum tends to the dotted reference curve corresponding to zero damping).
The results looks strange at first sight, since in accordance with Shrira (1989) and Part
1 for each Fourier harmonic the effect of the Landau damping is ∼exp (−const × k3t3)
and thus is expected to be accumulating fast with time. The paradox is explained
as follows: as time grows the first extrema are formed by longer and longer Fourier
components which are just emerging out of their transition stage and begin their
evolution as quasi-modes.

4.2.5. Characteristic scales

As t → ∞ every extremum conserves its width in terms of the stretched variable X,
while in terms of original physical coordinates it expands as t1/2. The width of the
first few extrema is of the order of unity (in terms of X) and decreases as j−1/2 as j

grows (see (A 12)). Thus we can introduce a dispersion lengthscale Ldisp based upon
the width of the first extrema:

Ldisp ∼ t1/2. (4.19)



262 I. A. Sazonov and V. I. Shrira

Parameter L−1
disp describes the spatial frequency of oscillations of the QM part of the

field. The value of Ldisp is determined by the real part of the dispersion.
The second characteristic lengthscale determined by the Landau damping and

denoted as LLandau is the width of the QM zone (see § 4.2.2 above), i.e. the range of x

where the QM perturbation is essentially non-zero is t − LLandau < x < t:

LLandau ∼ �−1/3 t2/3. (4.20)

The ratio LLandau/Ldisp gives the approximate number of the appreciable extrema in
the perturbation. The number grows as t1/6 as t → ∞.

The third key lengthscale is the cut-off scale kLandau(t), i.e. the characteristic upper-
most wavemumber of the disturbance which is determined by the damping factor
(4.11):

kLandau ∼ 1

(�t)1/3
.

Since the QM zone broadens as t2/3 and the velocity field decays as t−1/2 (for a
monopole) due to the dispersion, then a straightforward estimate of the energy of the
QM part of the perturbation yields

EQM ∼ LLandau

〈
u2

QM

〉
∼ t2/3(t−1/2)2 ∼ t−1/3,

which coincides with (3.17).

4.2.6. Forerunner

Ahead of the perturbation front, i.e. for x > t , there is a small but non-zero
part of the perturbation that we call ‘forerunner’. The forerunner rapidly decays
with the distance from the front. Taking the asymptotics of (A 10) for X 	 1 and
differentiating we find the main term:

I0 � 2

πX3t1/2
=

2t

π(x − t)3
=

−2

π�v3t2
, (4.21a)

In � ∂n
x

2

πX3t1/2
= ∂n

x

2t

π(x − t)3
=

(3 + n)!(−1)n+1

3π�v3+nt2+n
. (4.21b)

Far ahead the forerunner decays exponentially as ∼ exp{�X3t−1/2/8}.
The origin of the phenomenon of the forerunner can be explained as follows. The

initially localized perturbation in the vorticity field creates an algebraically decaying
velocity perturbation. The perturbed vertical velocity w induces extra vorticity due
to vertical displacement and the main flow vorticity gradient. This induced vorticity
results in the slight perturbations of velocity field which constitute the forerunner.

4.3. Long-wave initial perturbations

Now consider the perturbations which are initially already long-wave. Assume the
perturbation to be initially localized with the characteristic horizontal scale L̄ 	
H̄ and its spectrum û0(k) to be smooth. Then û0(k) decays when k exceeds the
characteristic wavenumber kL ∼ L−1 � 1.

First, similarly to § 4.2.2 we perform a preliminary analysis based on the group
velocity. If we follow a point moving with a fixed velocity v = x/t then for �v =
1 − v > 0 (i.e. behind the front v = 1) we observe an oscillating pattern with a local
wavenumber k(v),

k(v) ∼=
�v

2
,
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with local amplitude

F �

∣∣∣∣û0

(
�v

2

)∣∣∣∣ exp

{
− �

(
�v

2

)3

t

}
(4.22)

proportional to a product of two factors, both decaying as �v grows. The first one
rapidly decays if �v exceeds O(2L−1); the second one becomes effective when �v

exceeds O(2(�t)−1/3). These ‘cut-off’ scales become of the same order at a timescale
tL specified by the relation L−1 ∼ (�t)−1/3,

tL ∼ L3�−3. (4.23)

Therefore at times small compared to tL (1 � t � tL) an intermediate asymptotics
takes place and the perturbation behaves as a long-wave one: the QM zone where
the perturbation is essentially non-zero is determined by its initial spectrum width
�vmax ∼ L−1 and it broadens proportionally to t; the Landau damping can be
neglected. At time t ∼ tL both factors are important. At larger times, t 	 tL, the
Landau damping is the determining factor; the QM-zone broadening slows down to
t2/3 and the results of § 4.2 apply.

For example, if α0 ≡
∫ +∞

−∞ u0(x, 0) dx 
= 0 the field is proportional to I0(x, t). All the
cases can be described by the following universal formula:

ψQM
∼= [U (z) − 1] a(x, t).

Here a(x, t) is the amplitude factor (a = −uQM(x, t)):

a(x, t) ∼=


u0(x, 0) ∗ I �=0

0 (x, t), 1 � t � tL

u0(x, 0) ∗ I0(x, t), t ∼ tL

αnmin
Inmin

(x, t), t 	 tL,

where ∗ denotes convolution of two functions with respect to x:

f ∗ g =

∫ +∞

−∞
f (x ′)g(x − x ′) dx ′ =

∫ +∞

−∞
f (x − x ′)g(x ′) dx ′ (4.24)

and, as above, nmin is the minimal n such that αn 
= 0 (see (4.6)).
It is instructive to look at explicit formulae for some particular cases. For example,

consider a perturbation with the Gaussian initial spectrum

û0(k) = exp(−L2k2).

The saddle point method gives (see Appendix, § A.2):

ψQM
∼= [U (z) − 1] I �=0

0 (X, t) exp

{(
�

8

X3

t1/2
− L2

4

X2

t

)
θ(−X)

}
.

The values of the stretched coordinate X at which each of the factors results in an
e-fold decay are

XLandau ∼ 2�−1/3t1/6, XL ∼ 2L−1t1/2.

The threshold time tL at which they become equal is found from

X� ∼ XL ⇒ t ∼ L1/3�−1/3 = tL.

The specificity of each initial perturbation manifests itself in the dependence of the
threshold time tL on L and � where the intermediate asymptotics becomes the generic
asymptotics determined by the Landau damping.



264 I. A. Sazonov and V. I. Shrira

4.4. Vorticity evolution

The evolution of the vorticity field, which is of independent interest, differs
qualitatively from the evolution of any velocity components: its consideration cannot
be confined to the quasi-mode dynamics.

4.4.1. General formulae

The vorticity perturbation due to the QM part is proportional to the velocity
perturbation studied above and is therefore given by

ωQM
∼= U ′′(z) αnmin

Inmin
(x, t),

where nmin, as above, is the minimal n such that αn 
= 0 (see (4.6)).
However, the vorticity due to the non-modal part, primarily due to the tail, is

essential. From the results of Part 1 it follows that for large times (|k| t 	 1) the kth
wave component of vorticity takes the form

ω̂Tail � B̂(k, z) e−ikUt , B̂(k, z) � ω̂0(k, z) +
U ′′(z)

U ′(z)
û0(k, z). (4.25)

To obtain the spatial distribution of the vorticity in the tail we have to take an integral
of the type (3.11) in the limits (−∞, −k1) and (k1, +∞). However we can neglect the
contribution of the initial transition range (|k| < k1) for the same reasons as for the
QM part in § 3. Then performing inverse Fourier transform we arrive at the simple
explicit formula

ωTail(x, z, t) � B(x − Ut, z) ≡ ω0(x − Ut, z) +
U ′′

U ′ u0(x − Ut, z). (4.26)

The first term is due to advection of the initial vorticity by the main flow; the
second one is the vorticity induced by vertical displacements, mainly at the initial
stages of the evolution.

4.4.2. Vorticity in the ‘tail-zone’

According to (4.26) ωTail is localized along the line x = U (z)t with horizontal width
of order L, i.e. the scale of the initial perturbation. In the QM zone this line is close
to the surface: x � (1 − z)t (x̄ � (Ū s + Ū ′

s)t̄) or zTail(x, t) = (t − x)/t ≡ �v. The
amplitude of the vorticity remains of the same order and is localized in a a comet-
tail-like domain: a slightly oblique strip having constant horizontal cross-section and
vertical one narrowing with time:

�xTail � L, �zTail � L

t
.

We will call this region the ‘tail-zone’. It is in this tail-zone where the non-modal
part always dominates since the vorticity of the QM part decays as t1/2 (tn/2+1/2 for
n-pole). The vorticity distribution in the tail zone is sketched in figure 4.

It is also interesting to compare vorticity and enstrophy averaged over the vertical
coordinate. For the non-modal part we have∫ ∞

0

ωTail dz ∼ ω0 �zTail ∼ t−1,

∫ ∞

0

ω2
Tail dz ∼ ω2

0 �zTail ∼ t−1.

For the QM part we find the following estimates:∫ ∞

0

ωQM dz ∼ t−1/2
(
∼t−n/2−1/2

)
,

∫ ∞

0

ω2
QM dz ∼ t−1 (∼t−n−1).
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Initial perturbation
QM zone

Tail zone

z

L

Lx = U(z)t

L /t

x = t

Front zone

L

x

x = t – O (t2/3)

Figure 4. Sketch of the solution spatial structure at large t . The strip where the tail-zone
vorticity is localized is shown by a dot-dashed line; the QM zone, the front zone and the
region of initial perturbation are depicted by dashed lines.

Note that in terms of averaged vorticity the QM part dominates in the case of a
monopole.

The tail-zone ‘touches’ the surface in the relatively narrow region near the front of
the perturbation: t − x ∼ L (recall that t 	 L). In terms of X and z the size of this
region is X ∼ Lt−1/2, z = �v ∼ Lt−1. We will call it the ‘front zone’.

Behind the front zone, the local critical layer zc, i.e. the layer where the local phase
velocity of the quasi-mode matches the basic flow velocity, is at half the distance
zc � �v/2 ∼= zTail/2 between the surface z = 0 and the localization of the tail zone:
zTail � �v where the local group velocity coincides with the velocity of the mean flow.

4.4.3. Velocity distribution in the tail zone

Narrowing of the tail zone (in the vertical direction) results in a decrease of the
amplitude of all the velocity components. We focus on the u component as the most
important for long-wave perturbation. Using the relation ω � −∂zu approximately
valid for long-wave perturbations we obtain

uTail �
∫

B(x − U (z)t, z) dz. (4.27)

Since the vorticity ω is localized in a thin layer the velocity uTail varies fast in this
layer. We introduce a fast vertical coordinate referenced from the depth of the tail:

z = zTail + Z/t.

(The vorticity is very small if |Z| 	 1.) Then the first argument in the integrand can
be simplified to

x − U (z)t = x − U (zTail + Z/t)t ≈ [x − U (zTail)t] − U ′(zTail)Z ≈ Z
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as the terms in brackets are zero and U ′(zTail) ≈ −1 when the layer is not too deep.
Thus we have

uTail � 1

t

∫
B(Z, zTail) dZ.

In the case of a monopole we see that the total variation of uTail is not zero, hence
the tail zone serves as a boundary between zero and non-zero horizontal velocity.
In the case of a multipole the velocity uTail is localized in the tail zone, since the
integral

∫ +∞
−∞ B(x, z) dx = 0. In the case of a dipole (nmin = 1) we have a jet, and in

the case of quadrupole a jet with a counter-jet, etc. The velocity in all cases is of
the same order: O(t−1). However, for a monopole the velocity is distributed in the
area linearly stretching with time (the length is the length of the tail), so the energy
decays as t−1, since tO(t−1)2 = O(t−1). For higher multipoles the velocity is localized
in the area-preserving region and the energy of the tail part decays as O(t−2), that is
in accordance with our previous rough estimations.

Although the velocity in the tail decays faster than in the QM part for monopole
perturbations (α0 
= 0) for which it decays as t−1/2, these manifestations of initially
localized perturbations might be of independent interest because of their unusual
spatio-temporal structure discussed above. The tail tends to the so-called vorticity
patch known for its highly non-trivial dynamics and important role in many processes
(Saffman 1994), although in our case the patch strength is probably too weak to expect
it to play an important role.

Consider an example: let an initial perturbation be localized in an ellipse with
semi-axes L and D with its maximum at z = h as sketched in figure 1, with the
Gaussian distribution of vorticity:

ω0 = ωmax exp

(
− x2

L2
− (z − h)2

D2

)
. (4.28)

Using Fourier transform with respect to x it is easy to show that∫
u0(x, z) dx =

π

2
LDωmax erfc

[
z − h

D

]
,

∫
ω0(x, z) dx = L

√
πωmax exp

[
− (z − h)2

D2

]
.

Also, let U = exp(−z), then U ′′/U ′ ≡ −1. Then from (4.27) we have

uTail � Lωmax

t

{√
π exp

[
− (�v − h)2

D2

]
− π

2
D erfc

[
�v − h

D

]}
θ(�v − z).

Recall that �v is specified by x and t as �v = (x − t)/t and thus uTail varies slightly
along x at the distances under consideration.

Generalizing the above formula we can suggest an estimate for an arbitrary generic
perturbation of horizontal lengthscale L 
� 1:

uTail ∼ Lωmax

t
θ(�v − z).

Parameter D does not enter into the estimate since we consider the perturbations for
which it is of order of unity.

4.5. QM dominance revisited

Having clarified the main features of perturbation field evolution, now it is useful
to revisit the issue of how the QM dominance should be defined. On the basis of
the established picture of field evolution it is possible to introduce new criteria for
the dominance and to re-assess, depending on the criterion used, when the QM are
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prevalent. In § 3 we employed crude global criteria, i.e. we required the quasi-mode
to be so dominant that its total energy averaged over entire perturbed domain should
far exceed the non-modal part of the perturbation. For most conceivable applications
the more natural criteria would be some local ones based upon field characteristics
averaged either over the QM zone, which is the only place where an essentially
non-zero velocity field is present, or over the main extremum of the field.

4.5.1. The ‘initial transition’ component

We begin with the essentially non-local wave part ψIni formed by the longest wave
components which are at the initial stage. We cannot describe the evolution of this
part since we have no closed-form formulae for this stage of the evolution of the
harmonic perturbation. Here we show that for t 	 1 the ψIni part becomes small
compared to the QM part.

We estimate a characteristic amplitude of this part and its lengthscale, utilizing
the fact that the wave components at the initial stage preserve the same order of
magnitude:

ψ̂(k, z, t) ∼ ψ̂(k, z, 0) ≡ ψ̂0(k, z).

We also approximate ψ̂0(k, z) for small k by the main term in its Taylor expansion:

ψ̂0(k, z) � ψ̂
(n)
0 (0, z)(ik)n,

where ψ̂
(n)
0 ≡ ∂nψ̂0/∂(ik) and n should be understood as nmin.

Introduce a low-pass filtering function φ̂(k) rapidly decaying for |k| > kL = 1.

Then its x-space image φ(x) = (2π)−1
∫ +∞

−∞ φ̂(k) exp(ikx) dx decays if |x| > xL = 1.
We do not specify the filtering function. It can be smooth (Gaussain, Lorentz) or,
say, rectangular. Assuming (kL ∝ t−1) we, in the case in hand, use a narrowing filter
function: φ̂(tk).

Using the substitution k′ = kt , x ′ = x/t we can estimate ψIni as follows:

ψIni � 1

2π

∫ +∞

−∞
ψ̂(k, z, t) φ̂(kt)eikx dk ∼ ψ̂

(n)
0 (0, z)

2π

∫ +∞

−∞
(ik)n φ̂(tk)eikx dk

=
ψ̂

(n)
0 (0, z)

2πt1+n

∫ +∞

−∞
(ik′)n φ̂eik′x ′

dk′ =
ψ̂

(n)
0 (0, z)

2πt1+n
φ(n)(x/t),

where φ(n)(x) = ∂n
x φ(x) is a function decaying when |x| > xL = 1.

From (4.29) it is easy to see that the initial transition part decays as t−1 (t−1−n) and
spreads as t . The horizontal velocity decays as the stream function and the vertical
velocity decays as t−2−n.

The total energy of this part of the perturbation decays as EIni(t) ∼ t (t−(1+n))2 =
t−1−2n, which is the same as (3.20). Since this energy is uniformly distributed over the
perturbed area, it is straightforward to find its parts in the QM zone and in the area
of the global maximum, which yields the estimates t−4/3−2n and t−3/2−2n, respectively.

4.5.2. Local estimates of the QM and tail components

To compare energy and velocity in the region of the main (global) extremum for
an arbitrary multipole we need to carry out an analysis of In given by (4.17) similar
to that in § 4.2.4. From (4.17) it is easy to find asymptotics of In for large negative X:

In ≈ 1√
πt

Xn

2ntn/2
sin(n)

{
X2

4
+

π

4

}
exp

{
−� |X|3

8t1/2

}
, (4.29)
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where sin(n)(x) ≡ dn sin x/dxn. At the leading order the position of j th extremum
Xext

n,j is determined by the trigonometrical function in (4.29) while the corresponding

extremal value
∣∣I ext

n,j

∣∣ is found by substituting Xext
n,j into (4.29):

Xext
n,j ≈ −

√
π(4j + (−1)n) ≈

√
4πj, (4.30a)∣∣I ext

n,j

∣∣ ≈ 1

2nπ1/2

(4πj )n/2

tn/2
exp

{
−�(4πj )3/2

8t1/2

}
. (4.30b)

For n 
= 0, in contrast to the case of I0 the global extremum does not coincide with
the first maximum, unless time is not too small, but with one of the last extrema in the
QM zone. Differentiating (4.30) with respect to j and equating it to zero we find
the particular number j specifying the global extremum:

jmain
n =

n2/3t1/3

(3�)2/3π
. (4.31)

By virtue of (4.30) the main (global) extremum of In is∣∣Imain
n

∣∣ ≈ nn/3t−1/2−n/3

√
π(3�)n/3

exp

{
−n

3

}
,

which occurs in the vicinity

Xmain
n ≈

√
4πjmain

n =
4n1/3

(3�)1/3
t1/6,

xmain
n ≈ t − 4n1/3

(3�)1/3
t1/6+1/2 = t − 4n1/3

(3�)1/3
t2/3,

vmain
n ≈ 4n1/3

(3�)1/3
t−1/3.

The energy averaged over the global maximum can be estimated as the product of
maximal energy density and the duration of the maximum, i.e.

t1/2|umain|2.

The estimate of the energy density for the non-modal part (of which the energy in the
tail-part is the main constituent) remains the same as in § 3 but the total non-modal

energy ÊTail in the domain of interest (the main extremum) is much smaller than the

previous estimate ETail because of the smaller size of the zone: ÊTail = ETailt
−1/2.

Similarly, if we wish to compare the energy of modal and non-modal parts in the

QM zone only, which spreads as t2/3 (rather than as O(t)), we find ÊTail = ETail t
−1/3.

If we compare the evolution of the perturbation energy in the modal and non-
modal parts of the field averaged respectively over the entire perturbed domain, the
QM zone or the main extremum we find that although in all cases the corresponding
energies behave as t ν the exponents are different in different cases. The results are
summarized in table 2.

Here the first five multipoles and three different criteria based on energy are
considered. For each n the exponents ν corresponding to the modal and non-modal
parts of the field as well as to their ratio are presented. It worth noting that the
two local criteria lead to almost identical results (presented in the last six columns),
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Total energy QM zone Main maximum

QM Tail Ratio QM Tail Ratio QM Tail Ratio

n − 1
3

− 2
3
n νTail − 1

3
− 2

3
n νTail − 1

3
− 1

2
− 2

3
n νTail − 1

2

0 −1/3 −1 2/3 −1/3 −4/3 1 −1/2 −3/2 1
1 −1 −2 1 −1 −7/3 4/3 −7/6 −5/2 4/3
2 −5/3 −2 2/3 −5/3 −7/3 1 −11/6 −5/2 2/3
3 −7/3 −2 −1/3 −7/3 −7/3 0 −15/6 −5/2 0
4 −3 −2 −1 −3 −7/3 −2/3 −19/6 −5/2 −2/3

Table 2. Comparison of the evolution of the perturbation energy in the modal and non-modal
parts and their ratio averaged over the entire perturbed domain, the QM zone or the main
extremum.

n 0 1 2 3 4

Total energy 2/3 1 2/3 −1/3 −1
Energy in the QM zone (or in the main extremum) 1 4/3 1 0 −2/3
Horizontal velocity in the main extremum 1/2 1/3 0 −1/3 −2/3

Table 3. Comparison of ratios of energy in the QM zone and horizontal velocity in the
main extremum.

while differing noticeably from the crude global energy estimates of § 3. The latter for
convenience are reproduced in the first three columns. The main advantage that the
local criteria provide is that the ‘adjustment’ times defined on their basis are much
shorter and, we believe, more realistic. It is also worth noting that by using the local
criteria the QM asymptotics occur for the octapoles (n = 3) as well.

As an alternative to the energy criteria it is possible to use criteria based on longi-
tudinal velocity. If we choose as the criterion a local one based on the QM preva-
lence in the u-component of velocity within the main extremum umax then it is
straightforward to calculate umax

QM and umax
non−modal. The comparison of ratios log(|umax

QM |/
|umax l

non−modal|) and log(EQM/Enon−modal) based on the global and local criteria is presented
in table 3.

Thus in terms of u the QM prevalence begins later for monopoles and dipoles
and does not happen at all for octapoles. Although, again, strictly speaking, we can
claim only the fact that our estimates do not show such a prevalence for n � 4. The
possibility that the QM dominance holds for n � 4 cannot be excluded. The specific
choice of the criterion is dictated by the particular problem: the point we would like
to emphasize here is that whatever the choice the QM asymptotics does prevail in
most cases of interest corresponding to n = 0 or n = 1.

4.6. Direct simulation of the evolution

The picture of small perturbation evolution found above analytically obviously
requires numerical testing and raises a number of questions which can be addressed
only by means of direct numerical simulation. The following questions we view as
fundamental:

Is the qualitative picture of evolution we arrived at adequate or, more specifically,
is the perturbation velocity field indeed dominated by the quasi-mode, while the
vorticity is localized in the tail, being smeared in the comet tail?
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Are the analytical results quantitatively correct and with what accuracy? Where
do the theory shortcomings lie and what are the reasons behind them?

What are the characteristic times of ‘adjustment’ of an initial perturbation?
We try to address these questions by direct numerical simulation of a small number

of examples.
Direct numerical simulation of the two-dimensional linear problem has been carried

out by the pseudo-spectral method: Fourier expansion is performed with respect to x

and Chebyshev polynomials are used to represent the solution with respect to z. The
initial vorticity is set by a Gaussian distribution (4.28) with the parameters: ωmax = 1,
L = 2π, D = 1, h = 0, i.e.

ω0 = exp

(
−z2 − x2

4π2

)
. (4.32)

The basic flow is the Falkner–Skan flow (Part 1; Dupont & Caulliez 1993). The
evolution of this particular initial perturbation is the test case we have chosen. Results
of the evolution taken at a rather arbitraryily chosen moment t = 1000 are shown
in figure 5(a, b) where the spatial distributions of the instantaneous vorticity and
velocity (ψ-function) fields are presented. The results confirm the main features of the
qualitative picture of evolution established analytically: in the vorticity distribution
shown in figure 5(a) the tail zone is very pronounced and has the predicted comet
tail shape, while in the ψ distribution shown in figure 5(b) only the QM part with its
characteristic oscillations can be seen. Notice that there is no evidence of a singularity
in the critical layer for the QM part with a local wavenumber, i.e. at half the distance
between the tail zone and the surface (see above).

The next step is to compare quantitatively our analytical results with numerics. To
this end we choose to use the surface value of the horizontal velocity as a useful and
convenient field characteristic. It can be found as us = −∂zψ |z=0. At the same time us

can be easily extracted from the analytical results:

us =

∫ +∞

−∞
us(t = 0) I0(x, z) dx,

where
∫ +∞

−∞ us(t = 0) dx is the amplitude of the initial Dirac’s delta function. It equals

2π2 for initial perturbation (4.32). The integral

I0 = (2π)−1

∫ +∞

−∞
exp(ik(x − cp(k)t) dk

can be evaluated by both a numerical (FFT) method and analytically (by the saddle
point method). The latter approach is based on the long-wave approximation of cp(k)
and gives the useful formula (4.16). Applying the FFT method we again have two
options: we can use either the long-wave asymptotics for cp(k) or its ‘numerically
exact’ behaviour computed in Part 1, § 5; below for brevity we will use the word
‘correct’ for the latter. The above four approaches were used, and the results are
presented in figure 6. The fundamental question we are interested in now is to check
to what extent the QM part of the field is indeed sufficient to describe velocity field
evolution. Comparing the results of the numerical FFT integration of I0 using the
correct behaviour of cp(k) (curve 2) to the direct simulation (curve 1) we can see
that the curves nearly coincide: both the positions of the maxima and their values
are described perfectly. Curves 3 and 4 also almost coincide. Being both based on
the use of the same long-wave expansion of cp(k), curve 3 shows results of numerical
FFT integration of I0, while curve 4 gives its evaluation by the saddle point method.



Quasi-modes in boundary-layer-type flows. Part 2 271

0

1

300 400 500 600 700 800 900 1000

(a)

z

0

1

300 400 500 600 700 800 900 1000

(b)

z

x

Figure 5. Example of numerically simulated spatial distribution of the perturbation field at
t = 1000 evolved from initial conditions (4.32). (a) Vorticity isolines ω(x, z, t = 1000). Solid
(dashed) curves are for positive (negative) values of vorticity. Dot-dashed line indicates the
centre of the tail zone: x = Ut . (b) Stream function isolines: ψ(x, z, t = 1000). Solid (dashed)
curves are for negative (positive) values of ψ . Dot-dashed line indicates the centre of the tail
zone: x = Ut .

The importance of this observation is that it demonstrates the excellent performance
of the saddle point approach. A discrepancy in the positions of maxima between the
two pairs of curves, negligible for the main one and increasing with the distance from
the front, is obviously due to the long-wave approximation of the dispersion adopted
for curves 3 and 4. The increase in separation between the two pairs of curves is easy
to explain: since the maxima with the greater j are formed by shorter local wave
components for which the difference between the true and long-wave cp is greater, the
discrepancy also grows. Nevertheless, the use of this approximation gives reasonable



272 I. A. Sazonov and V. I. Shrira

0

900

1

1000 1100

x

us

4
3
2
1

0–5 5
X

800

(a)

0

900

1

1000 1100

x

us

4
3
2
1

0–5 5
X

800

(b)

2

3

–1

–2

Figure 6. Normalized surface horizontal velocity us for t = 1000 evolved from initial condi-
tions: (a) (4.32) and (b) ∂xω0. us is normalized by (πt)−1/2

∫ +∞
−∞ us(t = 0) dx and (πt)−1∫ +∞

−∞ (−xus(t = 0)) dx in (a) and (b), respectively. Curve 1 represents direct two-dimensional
numerical simulation; curves 2, 3, 4 describe only QM part: 2 – FFT method for the true
dispersion with cp(k) calculated numerically; 3 – FFT method for the long-wave approximation
of cp(k); 4 – asymptotic formula (4.16).

accuracy for the positions of the front and the first few maxima, while the amplitudes
of all extrema are described quite well. The presence of the field non-modal part
can be detected only in the plot of the dipole evolution, where it manifests itself
as a blip in curve 1, at the point where the tail reaches the surface (see figure 4).
The variation of the pulse width L does not change anything in this context. The
overall conclusion we arrive at is that the analytical approach based on long-wave
approximation developed here and the saddle point evaluation of the integrals gives
a quite satisfactory accuracy.

We present one more figure illustrating the emergence of the QM asymptotics by
plotting the maximum of the horizontal velocity at the surface evolving from initial
conditions (4.32) with L = 2 as function of time (see figure 7). Other parameters and
the flow are the same as in the previous figure. In accordance with the analytical
formulae the curve does indeed tend to t−1/2 and the precision of this asymptotics
increases with time.

Summarizing the above simulations we can conclude that the qualitative picture of
the evolution found analytically is adequate. Indeed, for large times the perturbation
velocity field is dominated by the quasi-mode, the vorticity being localized in a long
and narrow strip. Moreover, the analytical results proved to be quantitatively correct
with a good accuracy. Concerning the insignificant discrepancies found, it is easy to
explain the shifts of the extrema positions by the approximation of the dispersion
relation c(k) adopted.
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Figure 7. Decay of the maximal horizontal velocity at the surface evolving from initial
conditions (4.32) with L = 2. Dashed line shows the slope t−1/2 corresponding to the QM
decay. Dotted line indicates the law of the large-time decay of the non-modal part.

An investigation of the characteristic times of ‘adjustment’ as a function of the
parameters of the initial perturbation, which is obviously needed, requires, in our
view, a separate study for the following reasons. First, separation of the QM and non-
quasi-mode parts is far from straightforward in a numerical simulation. A possible
way to address this problem would be to construct the separation based upon the
specificity of the vertical structure of different parts of the solution. However, such a
procedure, if applied, would make the simulations quite cumbersome. Moreover, even
for the perturbations of the same initial shape the parameter space is two-dimensional
(L and D) and merely taking a sufficient number of points requires a very computer
intensive simulation. If the shape is varied as well, the required simulations would
grow to an industrial scale.

5. Concluding remarks
The main advance in understanding we report in the present paper is captured

by the term ‘adjustment’, a term we introduced to describe the key feature of
the evolution of arbitrary broadband initially localized inviscid two-dimensional
perturbations in boundary layer flows without inflection points. We found that the
evolution of an arbitrary† localized perturbation exhibits two qualitatively distinct
stages or regimes: the second stage corresponds to slow dynamics of long-wave
perturbations, which is well described in terms of quasi-mode evolution; the first
stage involves Fourier components of all scales and corresponds to a relatively fast
transitional process resulting in the disappearance of the short scales. The fact that
there is a universal asymptotic regime free of short and medium scales enables us to
refer to the corresponding transitional process by the term ‘adjustment’.

† Here the term ‘arbitrary’ is used in the following sense: the initial perturbation can be composed
of harmonics of arbitrary horizontal scales in x; the vertical scale is assumed to be of the order of
the boundary layer thickness, while the shape is such that at least one of the first three moments is
non-zero in accordance with the conditions formulated in § 3 and § 4.5.
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The emergence of the quasi-mode as the universal asymptotics is quite counter-
intuitive, since for each of the constituent Fourier components considered separately
the quasi-mode regime occurs just for a fraction of them and only as an intermediate
asymptotics. The explanation is based on the observation that the bounds of the
spectral interval exhibiting quasi-mode behaviour evolve with time in a specific way,
while the relatively smaller scale non-quasi-mode components prove to be rapidly
decaying. Although unable to describe the adjustment itself, we constructed a few
rough estimates showing when and in what sense the contribution of the non-
quasi-mode part can be considered negligible. We emphasize that the derived long-
time quasi-mode asymptotics are explicitly expressed in terms of certain integrals of
the initial distributions. Since the quasi-mode asymptotics essentially overlaps with the
triple-deck one, the above implies that the triple-deck regime which is applicable only
for long-wave initial perturbations also represents the large-time asymptotics of
arbitrary broadband ones.

The quantitative results which follow from the dominance of the QM asymptotics
have profound importance. In particular, the t−1/2 horizontal velocity decay ensures
that, as will be shown in the next paper of the series, the nonlinear effects are
‘accumulated’ and grow despite the amplitude decay. The overall qualitative picture
of evolution derived, which includes the emergence of a vortex patch due to the
non-QM part, might also have important implications, primarily in the context of
nonlinear dynamics and especially of periodic perturbations.

Since so far the only attempt to tackle analytically broadband perturbations was
based on the use of a piecewise linear model by Bowles & Smith (1995), it seems worth-
while to compare the results and discuss briefly the similarities and differences which
are illuminating. In § 6 of Part 1 we discussed in some detail the relationships between
the decaying quasi-modes in smooth continuous models of boundary layers and
neutral discrete modes of piecewise linear models for monochromatic perturbations,
which prepares the ground for a discussion of broadband packets. Following Part 1 we
will refer to the particular piecewise linear approximation of the basic flow which has
one break as the PL1 model. Figure 8 presents a typical sample of a simulation of
the evolution of a Gaussian pulse in smooth and PL1 models of boundary layer. The
PL1 model performs remarkably well in predicting the position of the front for all
times and shape of the first field extremum at large times. The adequate prediction
of the front position is not surprising since it has long been known that in the long-
wave limit the real part of dispersion relation for the PL1 profile approximates well that
of the true dispersion relation. The good prediction of the magnitude at the front
at large times and not so good for intermediate scales is due to the fact that, as
was mentioned in § 4.2.4, as time increases the first extremum is formed by longer
and longer components and so the effect of the Landau damping on the vicinity of
the front is decreasing. The shortcomings of the piecewise model and the underlying
reasons are quite obvious. The model fails completely to describe the field outside the
vicinity of the front and its global structure, since it is the Landau damping which
is responsible for the cut-off of the shorter scales and formation of the rear front
of the perturbation. The PL1 model greatly overestimates the role of shorter scales,†
and wrongly predicts the position and the magnitude of the field maximum. By
differentiating once the curves presented in figure 8 with respect to x one obtains the

† The integral energy of perturbations is preserved in the model while in reality the energy decays
as t−1/3 because of the disappearance of short and medium scales.
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picture of evolution for the initial distributions of the dipole type: the PL1 model pre-
dictions lose any resemblance to the true picture, except for the position of the front.
We conclude, that the PL1 model can indeed be used to find the position of the
front, and, with caution, for times large enough, to describe the field structure at
the front. Because of the strong presence of parasitic scales, the model, despite the
tempting simplicity, cannot be used for any nonlinear analysis. As shown in Part 1,
an increase in the number of breaks would make the situation worse. However, if the
PL1 model were amended by taking into account Landau damping in the spirit of the
example discussed in Part 1, § 6, it would give a qualitatively, and even quantitatively,
adequate picture of the evolution. The issue merits further investigation.

Although the main potential applications and developments of our linear results
lie in the area of nonlinear dynamics, there is a plenty of room for improvement and
further development even remaining within the framework of the linear theory. First,
within the framework of the same problem statement the integral estimates concerned
with the non-modal part of the perturbation could be improved, which would result
in a better idea of the characteristic times of adjustment. Further improvement of
evaluation of the transitional period can be also achieved by extensive numerical
simulations. In particular, the so far unknown dependence on the parameters of the
initial perturbations could be established. The reserves of the analytical approach do
not seem to be exhausted either. Perhaps, analytical solutions for particular boundary
layer profiles and particular initial distributions can be developed. We made no
serious attempt to explore this direction, although, because of the universality of
the perturbation evolution found, even a single example of this kind would be very
helpful.

The present study was confined to spatially uniform steady boundary layers. There
is no doubt that the phenomenon of the QM dominance in the long-time asymptotics
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holds for a wide class of spatially inhomogeneous and non-stationary boundary
layers, although to specify this class and to find the analogues to the homogeneous
asymptotics t−1/2 is a formidable problem in a general setting. However, now we just
point out that if the scales of inhomogeneity and non-stationarity admit the WKB
approximation, which is very often the case, then a direct generalization of the results
is quite straightforward.

Although studying the effects of nonlinearity, viscosity and three-dimensionality
lies beyond the scope of the present paper, it seems appropriate to outline how the
results obtained could help in understanding these questions. In the most of the
situations of interest the nonlinearity and viscosity are weak and, therefore, their
effects become important only after being accumulated over sufficiently large times.
The two-stage evolution pattern revealed allows a dramatic simplification of the
description. During the relatively fast adjustment both nonlinear and viscous effects
can be safely neglected. At the stage of slow evolution, the description has been
drastically simplified: instead of tracing the dynamics of a continuum of singular
vertical modes of continuous spectrum of all horizontal scales present in the initial
conditions, we reduce the problem to considering the evolution of a single vertical
long-wave mode which is regular to the leading order and has an explicit analytic
presentation. To investigate how the weak nonlinearity or/and viscosity affect the
slow evolution of this mode represents a challenging, but not hopeless, task which
will be dealt with in the subsequent papers of this series.

The authors are grateful to J. Healey for the helpful comments on the first draft
of the paper. The work was supported by Forbairt Basic Research Grant SC-98-530,
by INTAS (Grant 97-575, 01-234), by Grant HEA PRLT1 (501-133-2889) and by
Institute for Nonlinear Science (Cork, Ireland).

Appendix. Evaluation of the Green function integral by the saddle
point method

In § 4 our analysis of the long-time asymptotics of the evolution of arbitrary
perturbations has been reduced to evaluation of integrals of the type∫ ∞

0

eΦ(K;X,t) dK (A 1)

We evaluate the integrals by the saddle point method adjusted for our problem by
employing the version described in e.g. Wong (1989, § 3), and Fedoryuk (1977) which
is not commonly used. We provide below the key details of the analysis.

A.1. Study of I0

Since all integrals In can be expressed as derivatives of I0 (In = ∂n
x I0) we confine our

analysis to I0.

A.1.1. Saddle points

Consider the exponent of the integrand (4.15)

I0 =
1

2πt1/2

∫ ∞

0

eΦ(K) dK + c.c., Φ(K) = iKX + iK2 − �K3t−1/2. (A 2)
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To find its saddle points we, in the standard manner, first look for the roots of its
first derivative

Φ ′(K) = 0 ⇒ K±
s =

−1 ±
√

1 − X(3i�t−1/2)

(3i�t−1/2)
.

Since the integrals are concerned only with the QM part of the perturbation, which
due to the Landau damping is important only in the zone |X| � t1/6 determined by
virtue of (4.20), in our context this means that |X| t−1/2 � 1 and for large t the roots
can be approximated as follows:

K+
s

∼= − 1
2
X − 3�i

8

X2

t1/2
+ O(t−1), K−

s
∼=

2i

3�
t1/2 + 1

2
X + O(t−1/2). (A 3)

It is easy to see that the root K−
s yields an exponentially small integrand and, therefore,

the contribution due to the saddle point K−
s can be neglected in our asymptotic study.

Below we consider only the root K+
s and omit superscript +.

Now we can find an approximation of Φ(K) in the saddle point Ks for large t:

Φs ≡ Φ(Ks) ∼= − i

4
X2 +

�

8

X3

t1/2
+ O(t−1).

We introduce a new auxiliary independent variable s(K), such that Φ(K) = −s2 +Φs ,
i.e.

s2 = Φs − Φ ∼= −i

(
K +

X

2

)2

+
�

t1/2

(
K3 +

X3

8

)
+ O(t−1). (A 4)

If K → +∞, then s →
√

�K3t−1/2, which is real. It must be positive to ensure decay
of the integrand. Therefore we take the branch of s(K) which is positive for large
positive K . Function s(K) is given by

s ∼=

√
−i

(
K +

X

2

)2

+
�

t1/2

(
K3 +

X3

8

)
+ O(t−1) (A 5)

and is uniquely defined on the K-plane with cuts drawn from the branch point of
s(K):

Kb = − 1
2
X + o(t−1/2) (A 6)

towards ±i∞, respectively.
To accomplish the s(K) change of variables consider the limits of integration. When

the upper limit holds, we find image s0 of the boundary point (K = 0) on the s-plane:

s2
0 = Φs = − i

4
X2 +

�

8

X3

t1/2
+ O(t−1), (A 7)

s0
∼=

1

2
√

i
X

√
1 +

i�

2

X

t1/2
∼=

X

2
√

i
+

�
√

i

8

X2

t1/2
+ O(t−1). (A 8)

Hereinafter we use
√

i = eiπ/4. Now integral (A 2) takes the form

I0 =
1

2πt1/2

{
es2

0

∫ +∞

s0

e−s2

K ′(s) ds + c.c.

}
.

Notice that the directions s → +∞ as well as K → +∞ correspond to the direction
of steepest decent of the phase function Φ .
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To find K ′(s) we expand K(s) and K ′(s) into series with respect to t−1 in the vicinity
of the saddle point.† Let K = Ks + δ then, taking into account that Φ ′

s = 0, we have

s2 ≡ Φs − Φ(K) = −Φ ′′
s

2
δ2 − Φ ′′′

s

3!
δ3 + · · · .

Solving this equation with respect to δ by subsequent approximations assuming s to
be small, we obtain

K = Ks +

√
2

−Φ ′′
s

s +
Φ ′′′

3(Φ ′′
s )2

s2 +
3Φ ′′′′

s Φ ′′
s − 5(Φ ′′′

s )2√
−2Φ ′′

s (Φ ′′
s )2

s3 + · · · .

In our case we have

Φ ′′
s

∼= 2i + 3X�t−1/2 + O(t−1) (
√

−Φ ′′
s /2 ∼= −1/

√
i + (3/2)�

√
iXt−1/2 + O(t−1)),

Φ ′′′
s = −6�t−1/2, Φ ′′′′

s = 0.

Thus we arrive at the double series for K(s; X, t)

K ∼=
[

− 1
2
X − 3�i

8

X2

t1/2
+ O

(
1

t

)]
+

[√
i − 3�

4
√

i

X

t1/2
+ O

(
1

t

)]
s

+

[
�

t1/2
+ O

(
1

t

)]
s2

2
+ · · ·

and, differentiating term by term, we find

K ′ ∼=
[√

i − 3�

4
√

i

X

t1/2
+ O

(
1

t

)]
+

[
�

t1/2
+ O

(
1

t

)]
s + · · · .

Finally we obtain the integral

I0 =
1

2πt1/2
es2

0

∫ +∞

s0

[√
i +

�

t1/2

(
− 3X

4
√

i
+ s

)
+ O

(
1

t

)]
e−s2

ds + c.c.., (A 9)

which can be integrated explicitly term by term. Note that for an arbitrary generic
spectrum of û0(k, 0) we can present the integrand as

û0

(
−1

2

X

t1/2
+

√
i

t1/2
s + O

(
1

t

)
, 0

)
×
[√

i +
�

t1/2

(
− 3X

4
√

i
+ s

)
+ O

(
1

t

)]
e−s2

.

A.1.2. Main term of the asymptotics

The main term of (A 9) we were looking for and its first-order correction �I0,
which is needed to estimate the accuracy, can both be expressed in terms of error

† Strictly speaking, to obtain uniform asymptotics of I0 (i.e. for all X) we should expand K(s) into
a series which approximates K(s) simultaneously at the two points, the saddle point (s = 0) and the
boundary point (s0). The corresponding expansion takes the form K(s) =

∑∞
n=0(an + bns)s

n(s − s0)
n.

Retaining N terms we can get exact values up to the N th derivatives at the points 0 and s0. However,
it can be shown that for the case in hand this rigorous approach, compared for I0 with the one-point
expansion employed, results in a discrepancy only in the third term of the asymptotic series with
respect to t−1/2. Thus, for our purposes the rigorous cumbersome approach is unnecessary.
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functions

I0
∼= Re

[ √
i

2
√

πt1/2
es2

0 erfc {s0}
]

+ O(t−1), (A 10)

�I0
∼= −

[
Re

3�

8
√

π
√

i

X

t
es2

0 erfc {s0}
]

+
�

2πt
+ O

(
t−3/2

)
, (A 11)

where erfc {s0} = (2/
√

π)
∫ +∞

s0
e−s2

ds is the complementary error function (see
Abramowitz & Stegun 1965).

A.1.3. Large-negative-X asymptotics

First we consider large negative X. Using the known asymptotic behaviour of the
error function for large values of the real part of its argument (see Abramowitz &
Stegun 1965), we find for |X| 	 1 and X < 0:

I0 ≈ 1√
πt1/2

sin

{
X2

4
+

π

4

}
exp

{
−� |X|3

8t1/2

}
+

2

πt1/2X3
+ O(t−1). (A 12)

The first term in (A 12) describes an oscillating pattern, which prevails for moderate
−X: 1 � −X < O(t1/6) (i.e. in the QM zone) and decays very fast for greater −X.

The second summand describes the non-oscillatory part of the QM contribution.
Its asymptotics in the non-scaled variables takes the form

2

πt1/2X3
=

2t

π(x − t)3
∼ t−2 for fixed x (or x/t) and t → ∞,

i.e. this component of the QM part decays faster than the ‘initial transition’
contribution. Nevertheless it is this term which determines the far asymptotics of
I0 behind the QM zone. For our analysis this term is not important although it con-
tributes importantly to the integral

∫ +∞
−∞ I0(x, t) dx. In the accepted normalization this

integral is equal to one for all t as its spatial spectrum exp{ik(x − t)+ ik|k|t − �k2|k|t}
tends to unity when k → 0.

A.1.4. Simplified real formula for I0

If we look at (A 12) it is easy to see that for large −X the value of I0 is the product
of the large-|X| asymptotics for I �=0

0 and the damping factor

exp

{
−�|X|3

8t1/2

}
≡ exp

{
−�

(
�v

2

)3

t

}
plus a small non-oscillatory addend �Inon-osc.:

I0 ≈ I �=0
0 exp

{
−�|X|3

8t1/2

}
+ �Inon-osc + · · · .

The addend �Inon-osc (which behaves as 2/(πt1/2X3) when |X| � 1), can be neglected
in most plausible considerations.

On the other hand, for small and moderate −X (|X| � t1/6) the effect of the Landau
damping is negligibly small

exp

{
−�|X|3

8t1/2

}
∼= 1, I0

∼= I �=0
0 ,

i.e. �Inon-osc → 0 as X → 0.
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This observation suggests that a good approximation for I0 might be

I0
∼= I �=0

0 exp

{
�

8

X3

t1/2
θ(−X)

}
. (A 13)

We would arrive at the same formula by applying the multiple-scale technique.
Separating the scales and a seeking solution in the separable form, i.e. as a product
of two functions depending on either the ‘fast’ or ‘slow’ scale variable, we obtain I �=0

0

as the solution describing the dependence on the ‘fast’ variable, while the Landau
damping factor describes the ‘slow’ dependence. Comparing the ‘simplified’ two-scale
formula (A 13) with the more precise asymptotic formula (A 10) we found that the
relative error is O(10−2) for the times 102–103. We conclude that the ‘simplified’
formula (A 13) provides an accuracy sufficient for our purposes and will use it in our
analysis throughout the paper.

A.2. Study of IG

Now we consider a slightly modified integral which is central for the investigation of
initially long-wave perturbations in § 4.3:

IG =
1

2πt1/2

∫ ∞

0

eΦG(K) dK + c.c., (A 14)

ΦG(K) = iKX + iK2 − �K3t−1/2 − KL2t−1, L 	 1.

The difference compared to I0 is in the last term, which is small when t → ∞
but remains important for sufficiently large t due to the large parameter L. A
straightforward expansion in large t misses the intermediate asymptotics we are
interested in. This asymptotics occurs when the last two terms in (A 14) are of
comparable smallness. To describe this situation in terms of asymptotic expansions
we introduce temporarily a fictitious small parameter ε which reflects the smallness
of the last two terms:

ΦG(K) = iKX + iK2 − ε�K3t−1/2 − εKL2t−1. (A 15)

We consider ε as a small parameter only temporarily and equate it to unity in the
final results.

Solving equation Φ ′
G(K) = 0 by successive approximations we find the saddle point

Ks
∼= − 1

2
X − ε

3�i

8

X2

t1/2
+ ε

iL2

2

X

t
+ O(ε2).

By substituting K = Ks into (A 15) we evaluate ΦG(K) at the saddle point Ks:

Φs,G
∼= − i

4
X2 + ε

�

8

X3

t1/2
− ε

L2

4

X2

t
+ O(ε2).

Similarly to § A.1, a substitution s(K), such that ΦG(K) = −s2 + Φs,G, yields

s2 ∼= −i

(
K +

X

2

)2

+ ε
�

t1/2

(
K3 +

X3

8

)
+ ε

L2

t

(
K2 − X2

4

)
. (A 16)

If K → +∞, then s →
√

ε�K3t−1/2/8 which is real. As in § A.1 we choose the
appropriate branch of s(K) which is positive for large positive K:

s ∼=

√
−i

(
K +

X

2

)2

+ ε

[
�

t1/2

(
K3 +

X3

8

)
+

L2

t

(
K2 − L2

4

)]
. (A 17)
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The function is uniquely defined on the K-plane with cuts drawn from the branch
point of s(K):

Kb
∼= − 1

2
X + o(ε) (A 18)

towards ±i∞, respectively.
We find image of the boundary point (K = 0) on the s-plane:

s0,G
∼=

X

2
√

i
+ ε

�
√

i

8

X2

t1/2
− ε

L2
√

i

4

X

t
, (A 19)

s2
0,G = Φs

∼= − i

4
X2 + ε

�

8

X3

t1/2
− ε

L2

4

X2

t
. (A 20)

The main term of (A 9) is

IG
∼= Re

√
i

2
√

πt1/2
es2

0,G erfc {s0,G}
∣∣∣∣∣
ε=1

+ O(t−1).

In our analysis we use a more useful simplified real formula for IG, obtained in the
same manner as in § A.1:

IG = I �=0
0 exp

{(
�

8

X3

t1/2
− L2

4

X2

t

)
θ(−X)

}
. (A 21)
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